Skip to main content

Smart Cars for Today and Futures !!

Smart Cars for Today and Futures …

The Smart car was originally designed as an economic solution to fuel efficiency and pollution, while at the same time providing a practical resolution to parking problems everywhere. Depending on the model, the two-passenger compact car is approximately eight to nine feet long, five feet tall and five feet wide. Smart cars are designed to be able to park perpendicular in a parallel parking space, allowing room for two Smart cars in one normal sized spot or driveway. Gas mileage also depends on the style and engine horsepower of the car, but typically gets 46 miles per gallon with city driving and 69 miles per gallon with highway driving. The plastic bodies of the Smart car were also made to be recyclable.
The first important thing to know is that self-driving cars are not street legal yet. While they can be driven on closed courses, these fully autonomous cars are not yet available to purchase. There is a difference between smart vehicles and autonomous vehicles; a smart car refers to its ability to connect with other devices, and to “make decisions” based on computations derived from the environment. Autonomous cars use smart technology to drive without human intervention. An autonomous car is always a smart car, but a smart car is not always an autonomous car.

Who’s doing it?

In short, everyone. Google started work on the pioneering technology about eight years ago, helped by expert recruits from Stanford, but Uber, China’s Baidu and even Apple – if you believe the rumours – are working on self-driving technology.

The automotive manufacturers aren’t sitting on their hands either. Elon Musk’s Tesla is working on the technology for its electric cars, while GM, Daimler, Volvo, Ford, Jaguar Land Rover, Audi and BMW are also developing solutions.

What’s required to make a self-driving car work?

The bulk of the technology required for self-driving cars is not all that futuristic, but it is the combination of different sensors with advanced computer vision systems that makes it work.

Many of the vehicles use what is called Lidar (Light Detection and Ranging) – a rotating laser, usually mounted on the roof, that continually scans the environment around the car. Traditional radar is also used for detecting distances to objects and cars, as are various cameras, accelerators, gyroscopes and GPS, which are all used in conjunction to build a 3D picture of the environment around the vehicle.

The most complex part of a self-driving system is the software that collects the data, analyses it and actually drives the vehicle. It has to be capable of recognising and differentiating between cars, bikes, people, animals and other objects as well as the road surface, where the car is in relation to built-in maps and be able to react to an often unpredictable environment.

How it drives?

Our self-driving cars are designed to navigate safely through city streets.

They have sensors designed to detect objects as far as two football fields away in all directions, including pedestrians, cyclists and vehicles—or even fluttering plastic shopping bags and rogue birds. The software processes all the information to help the car safely navigate the road without getting tired or distracted.


Where am I?

The car processes both map and sensor information to determine where it is in the world. Our car knows what street it's on and which lane it's in.

What’s around me?

Sensors help detect objects all around us. The software classifies objects based on their size, shape and movement pattern. It detects a cyclist and a pedestrian in this case.

What will happen next?

The software predicts what all the objects around us might do next. It predicts that the cyclist will ride by and the pedestrian will cross the street.

What should I do?

The software then chooses a safe speed and trajectory for the car. Our car nudges away from the cyclist, then slows down to yield to the pedestrian.

The Challenges of Smart Cars

The single largest challenge facing autonomous and smart cars is legal liability. If a car makes a decision that saves the driver but injures another, who if anyone is responsible for those injuries? The reason that car companies are so shy of jumping head-first into smart and self-driving cars is in large part due to their legal teams’ suggestion. Until the legality of self-driving cars is final, long-standing car manufacturers are likely to avoid fully automated vehicles.

Advantages of a Smart Car ……

The advantages of Autonomous car are numerous and include:

1. The lack of human error whilst driving, will result in a much safer journey

2. Due to the sensors on the Autonomous car, they will be able to pack closer together, allowing more cars on the road and therefore shorting traffic times.

3. Disabilities would no longer be a factor in driving, meaning anyone could drive.

4. You would need less space for parking as well as the car would be able to drop you off and then find a parking space further away.

5. The average worker spend 200 hours a year commuting, an autonomous car would allow workers to spend the time on other things.

6. There would be no need to pass a driving test or gain a driving license as everyone would be able to drive.

-     Disadvantages of a Smart Car

However, there are still some disadvantages of Autonomous cars:

1. There will always be the worry of the computer crashing or malfunctioning, resulting in a major collision.

2. The lack of need for drivers would be catastrophic for the economy; in worldwide there were numbers of taxi drivers, who would all become unemployed. This would be common for all driving professions, including lorry drivers, bus drivers etc.

3. When they are first released, they are likely to be extremely expensive, and therefore most people won’t be able to afford them.

4.  Driving enthusiasts may not find the concept of self-driving car appealing, and therefore will most likely want to keep normal cars.

Who’s leading the autonomous pack?

Google is currently out in front, having driven more autonomous miles and collected more data than anyone else. But traditional car manufacturers are quickly catching up.

It’s also unclear what Google’s intentions are. The company recently partnered with Fiat Chrysler to fit its self-driving technology into the Chrysler Pacifica hybrid minivan, but its efforts to develop a bespoke self-driving car without a steering wheel or pedals point to an intention to develop cars on its own.

Volvo has been working on self-driving technology under the guise of safety features for years, and has explored the idea of road trains for commercial vehicles, where a front lorry guides a convoy.

When are we going to be able to step into one? Smart Cars of the (Near) Future

Many experts believe that full adoption of autonomous vehicles won’t happen until 2030, but some vehicles with self-driving capabilities are expected by 2020. Whether they are legal to drive everywhere or to drive without an occupant – to pick up a passenger or park themselves – remains to be seen.





Comments

Post a Comment

Popular posts from this blog

Li-Fi - A Future Connectivity !!

What is Li-Fi? Light Fidelity or  Li-Fi   is a Visible Light Communications (VLC) system running wireless communications travelling at very high speeds. Li-Fi uses common household LED (light emitting diodes) lightbulbs to enable data transfer, boasting speeds of up to 224 gigabits per second . The term Li-Fi was coined by University of Edinburgh Professor Harald Haas during a TED Talk in 2011. Haas envisioned light bulbs that could act as wireless routers. How it works? Li-Fi and Wi-Fi are quite similar as both transmit data electromagnetically. However, Wi-Fi uses radio waves while Li-Fi runs on visible light . As we now know, Li-Fi is a Visible Light Communications (VLC) system. This means that it accommodates a photo-detector to receive light signals and a signal processing element to convert the data into 'stream-able' content. Visible Spectrum An LED lightbulb is a semi-conductor light source meaning that the constant current of elect

What is Machine 2 Machine (M2M)? How its work and Challenges?

Machine-to-machine communication, or M2M, is exactly as it sounds: two machines “communicating,” or exchanging data, without human interfacing or interaction. This includes serial connection, powerline connection (PLC), or wireless communications in the industrial Internet of Things (IoT). Switching over to wireless has made M2M communication much easier and enabled more applications to be connected. As businesses have realized the value of M2M, it has taken on a new name: the Internet of Things (IoT) . IoT and M2M have similar promises: to fundamentally change the way the world operates. Just like IoT, M2M allows virtually any sensor to communicate, which opens up the påossibility of systems monitoring themselves and automatically responding to changes in the environment, with a much reduced need for human involvement. M2M and IoT are almost synonymous—the exception is IoT (the newer term) typically refers to wireless communications, whereas M2M can refer to any two ma

Home Automation Why? And How ?

 What is Home Automation?  With advancement of Automation technology, life is getting simpler and easier in all aspects. In today’s world Automatic systems are being preferred over manual system. With the rapid increase in the number of users of internet over the past decade has made Internet a part and parcel of life, and IoT is the latest and emerging internet technology. Internet of things is a growing network of everyday object-from industrial M2M that can share information and complete tasks while you are busy with other activities. Wireless Home Automation system using IoT is a system that uses computers or mobile devices to control basic home functions and features automatically through internet from anywhere around the world, an automated home is sometimes called a smart home. It is meant to save the electric power and human energy.  A key feature in home automation is the ability to do tasks automatically and monitor or change status remotely. Common tasks in

Wireless Network and Wireless Technology

Wireless communication is among technology’s biggest contributions to mankind. Wireless communication involves the transmission of information over a distance without help of wires, cables or any other forms of electrical conductors. The transmitted distance can be anywhere between a few meters (for example, a television’s remote control) and thousands of kilometres (for example, radio communication). Many communication technologies are well known such as WiFi, Bluetooth, ZigBee and 2G/3G/4G cellular, but there are also several new emerging networking options such as Thread as an alternative for home automation applications, and Whitespace TV technologies being implemented in major cities for wider area IoT-based use cases. Depending on the application, factors such as range, data requirements, security and power demands and battery life will dictate the choice of one or some form of combination of technologies. These are some of the major communication technologies on o

OCPP - An EV Charging Protocol

Nowadays, the growing CO2 emissions are one of the main international issues. The world is becoming aware that the current climate issues start being critic and that something has to be done. In parallel, Earth starts running out of fossil fuels so alternative energies and alternative ways of producing energy have to be found. Driving electric vehicles would reduce the CO2 emissions and the use of fossil fuels. Types of EV Charging Protocols ·         Open Smart Charging Protocol (OSCP) ·         OpenADR 2.0 ·         Open Charge Point Interface protocol (OCPI v0.4) ·         IEEE 2030.5 (IEEE Adoption of Smart Energy Profile 2.0 / SEP2) ·         Smart charging protocols overlap ·          Open Charge Point Protocol (OCPP) ·         IEC 61850-90-8 ·         Open Clearing House Protocol (OCHP) ·         Open Charge Point Interface protocol (OCPI 2.1) ·         Open InterCharge Protocol (OICP) ·         eMobility Inter-Operation Protocol(eMIP)

The Smart Agriculture Revolution !!

The government realizes the need to bring about major changes into agriculture and incorporating the benefits of the digital revolution for better results.  The Internet of Things (IoT) is transforming the agriculture industry and enabling farmers to contend with the enormous challenges they face. The industry must overcome increasing water shortages, limited availability of lands, difficult to manage costs, while meeting the increasing consumption needs of a global population that is expected to grow by 70% by 2050. (Reference:  Food and Agriculture Organization of the United Nations ) Smart farming is a concept quickly catching on in the agricultural business. Offering high-precision crop control, useful data collection, and automated farming techniques, there are clearly many advantages a networked farm has to offer Why agriculture needs to improve? Agriculture is one of the major industries in India . It employs around 50% of the workforce and along with fisher

Project Loon - Balloon-Powered Internet for Everyone

What is Project Loon? More than half of the world's population is still without Internet access. Project Loon is a network of balloons traveling on the edge of space, designed to extend Internet connectivity to people in rural and remote areas worldwide History  In 2008, Google considered contracting with or acquiring Space Data Corp., a company that sends balloons carrying small base stations about 20 miles (32 km) up in the air for providing connectivity to truckers and oil companies in the southern United States, but didn't do so Unofficial development on the project began in 2011 under incubation in  Google X  with a series of trial runs in  California 's  Central Valley . The project was officially announced as a Google project on 14 June 2013 The project has run its experimental pilot in New Zealand, Calafornia’s Central Valley, northeast Brazil, South Africa, Sri Lanka (in February),  as well as in Indonesia. T

Pokémon Go is getting Indian youth to do what their parents never could .....

What is Pokemon Go? Pokemon Go is a mobile-phone game based on Pokemon cartoon characters and augmented reality. Augmented reality refers to a real-time representation of any actual physical environment with certain elements that are highlighted or modified. In other words, a view of any real world environment onscreen with certain modifications. Developed by Niantic labs , this technology was released on 6 July on Android and iOS in selected countries . Pokemon Go players have to move around in the physical world to catch Pokemon, join gyms and battle with other players. Just as in the animation series. Pokémon Go is getting Indian youth to do what their parents never could.... Young Indians are visiting temples more frequently—but not due to religious reasons. The hit game Pokémon Go is drawing youngsters in India to visit temples as many “pokéstops,” or locations where you can find Pokémon, are located inside these places of worship. Pokémon Go is an

LiDAR (Light Detection and Ranging)

What is LIDAR? LiDAR  (Light Detection and Ranging)   is fundamentally a distance technology. An airborne LiDAR system actively sends light energy to the ground. This light emitted is known as a pulse . The LiDAR measures reflected light back to the sensor. This reflected light is known as a return . So pulses of light travel to the ground. They return and are detected by the sensor giving the range (a variable distance) to the Earth. This is how LiDAR earned its name – Light Detection and Ranging .  LIDAR systems allow scientists and mapping professionals to examine both natural and manmade environments with accuracy, precision , and flexibility. NOAA scientists are using LIDAR to produce more accurate shoreline maps, make digital elevation models for use in geographic information systems, to assist in emergency response operations, and in many other applications. Currently we are using two types of LiDAR - Ariborne LiDAR and Ground-Based LiDAR. Airborne

Drones - A Future Technology

What is a Drone? – “Drones” are probably the most advanced equipment in the field of robotics, aeronautics and electronics. The technical name of drones is “Unmanned Aerial Vehicles” (UAVs) or Remotely Piloted Aerial Systems (RPAS). They are aerial vehicles which come in wide varieties of sizes, shapes and functions, which are controlled either by remote or control systems from the ground. They are generally used to carry out tasks in which manned flight is considered to be risky. Drones mostly find use in military services, but are now days finding use in various civilian operations such as search and rescue, weather analysis etc. They are known for their “precision” and “stealth” features. Drones have carried out monumental tasks in preventing terrorist attacks. How Drones Work? A typical unmanned aircraft is made of light composite materials to reduce weight and increase maneuverability. This composite material strength allows  military drones  to cruise at extremely high a