Skip to main content

HaLow - Future Of WiFi....

What is HaLow?

There's a new wireless networking protocol in town and it comes to bring connectivity to the Internet of Things. Wi-Fi HaLow (pronounced "HAY-low") is a marketing name used for products that utilize the IEEE 802.11ah wireless technology, which offers longer range and lower power connectivity than traditional WiFi-certified products.

Wi-Fi HaLow is the latest specification from the Wi-Fi Alliance looking to expand the range of Wi-Fi's connectivity options. Wi-Fi HaLow will be able to easily work through walls and large barriers because of the propagation capabilities of low-frequency radio waves, as it will operate in the unlicensed wireless spectrum below 1GHz. HaLow’s range will be nearly double the range of today's Wi-Fi, with estimates extending as high as a whopping 3,280 feet. 

HaLow is designed for the Internet of Things, designed to connect multiple devices wirelessly, over extended distances and using lower power. 
  • 802.11ah HaLow: for low data rate, long-range sensors and controllers.
  • 802.11af: for similar applications to 802.11ah. This network option relies on unused TV spectrums instead of 2.4 GHz or 5 GHz bands for transmission.
  • 802.11ad: for multigigabit speeds (sans wires) and high-performance networking.

A History of Past & Current 802.11 Amendments.

802.11a (1990): “WiFi A”—also known as the OFDM (Orthogonal, Frequency Division Multiplexing) waveform—was the first amendment, and it came two years after the standard was complete. This amendment defined 5 gigahertz band extensions, which made it more flexible (since the 2.4 GHz space was crowded with wireless home telephones, baby monitors, microwaves, and more).

802.11b (2000): As one of the first widely used protocols, “WiFi B” had an improved range and transfer rate, but it is very slow by today’s standards (maxing out at 11 mbps). 802.11b defined 2.4 GHz band extensions. This protocol is still supported (since 80% of WiFi runs off of 2.4 GHz), but the technology isn’t manufactured anymore because it’s been replaced by faster options.

802.11g (2003): “WiFi G” came onto the market three years after B, and it offered roughly five times the transfer rate (at 54 mbps). It defined 2.4 GHz band extensions at a higher data rate. The primary benefit it offered was greater speed, which was increasingly important to consumers. Today, these speeds are not fast enough to keep up with the average number of WiFi-enabled devices in a household or a strong wireless draw from a number of devices.

802.11n (2007): “WiFi N” offered another drastic improvement in transfer rate speed—300-450 mbps, depending on the number of antennas—and range. This was the first main protocol that operated on both 2.4 GHz and 5 GHz. These transfer rates allow large amounts of data to be transmitted more quickly than ever before.

802.11ac (2013): In 2013, “WiFi AC” was introduced. AC was the first step in what is considered “Gigabit WiFi,” meaning it offers speeds of nearly 1 gbps, which is equivalent to 800 mbps. That’s roughly 20 times more powerful than 802.11n, making this an important (and widely used) new protocol. AC runs on a 5 GHz band, which is important—because it’s less widely used, you’ll have an advantage as far as high online speeds are concerned, though the higher frequency and higher modulation rate mean the range is more limited

802.11ah: - is 900 megahertz WiFi, which is ideal for low power consumption and long-range data transmission. It’s earned the nickname “the low power WiFi” for that very reason.

802.11af: - utilizes unused television spectrum frequencies (i.e., white spaces) to transmit information. Because of this, it’s earned the nickname “White-Fi.” Because these frequencies are between 54 MHz and 790 MHz, AF can be used for low power, wide-area range, like AH.

802.11ad: - couldn’t be further from AH. While AH is a future LPWAN option, AD is ideal for very high data rate, very short range communications.

AD WiFi - previously known as WiGig because of it’s predecessor 802.11ac—separates itself from the 2.4 GHz and 5 GHz bands and operates on a 60 GHz band. This space is completely free and open, which helps it achieve speeds that are 50 times faster than WiFi N. And while AH uses 900 MHz, AD uses 60 GHz. To put that into perspective, 60 GHz is equivalent to 60,000 MHz.

Why A New Standard?

The increasing number of devices that need connectivity means that traditional WiFi networks can’t keep up. Also the Internet of Things, smaller smart and wearable devices that need to stay in touch but with infrequent communication are crying out for reliable, effective, low cost, mains free connectivity that can reach them wherever they are, even behind thick walls or on the move.  HaLow provides that, and more besides.

What frequency is Wi-Fi HaLow?

Wi-Fi HaLow sits in the 900MHz band, designed to offer better penetration through walls, as well as nearly doubling the range compared to existing Wi-Fi connections. HaLow will also support IP-based connections to the cloud, for example to make your smartwatch independent.

You'll have to have IEEE 802.11ah compatible hardware of course, and it's likely that it will support existing 2.4 and 5GHz bands as normal too.

How Wi-Fi HaLow Differs from Previous Wi-Fi Standards?

HaLow extends Wi-Fi into the 900 MHz band, a part of the electromagnetic radiation spectrum that is well-suited for small data payloads and low-power devices. This lower part of the spectrum is also able to penetrate walls and other physical barriers and has better range than the 2.4GHz and 5 GHz Wi-Fi bands.

Wi-Fi HaLow is also the first Wi-Fi specification to operate in frequency bands below one gigahertz (900 MHz), and it has a range of nearly twice that of other Wi-Fi technologies. In addition to its extended range capabilities, Wi-Fi HaLow is also able to penetrate walls and other barriers considerably better than previous Wi-Fi standards. 

Why Does It Need Less Power?

It needs less power because instead of transferring large amounts of data quickly like your current business Wi-Fi connection, it sends data in periodic and concentrated bursts.

Battery Life

The long range and low power requirements means that WiFi HaLow devices will be able to operate without mains power and without the need for a powerful battery.

As well as being useful for the small smart devices, HaLow’s background WiFi blackspot-filling function and buffering-busting properties could have a positive impact on ‘Bring Your Own Device’ (BYOD) battery life.

How will Wi-Fi HaLow be used?

It's likely to find its way into things like wearable technology, so your fitness band or smartwatch could use Wi-Fi HaLow instead of, or as well as, Bluetooth LE.

The use cases that the Wi-Fi Alliance  have outlined include smarthome, connected cars, healthcare and various other industrial applications. For example, multiple sensors could be connected over Wi-Fi HaLow in your smarthome.

HaLow clearly has so many potential connectivity and cost saving applications across healthcare, industrial, retail, agriculture and other industries. It could become a valuable part of large-scale private and public facilities, and even for connected cars.

In all these cases it's likely to be low-bandwidth devices, providing a trickle of information, rather than a flood.

When are Wi-Fi HaLow devices likely to appear?

Not for some time. This is just first stage in making the certification official. Devices will need to be developed and tested, so you're unlikely to see anything in the immediate future. The Alliance expects to launch a certification process for Wi-Fi HaLow products in 2018.

Comments

Post a Comment

Popular posts from this blog

Li-Fi - A Future Connectivity !!

What is Li-Fi? Light Fidelity or  Li-Fi   is a Visible Light Communications (VLC) system running wireless communications travelling at very high speeds. Li-Fi uses common household LED (light emitting diodes) lightbulbs to enable data transfer, boasting speeds of up to 224 gigabits per second . The term Li-Fi was coined by University of Edinburgh Professor Harald Haas during a TED Talk in 2011. Haas envisioned light bulbs that could act as wireless routers. How it works? Li-Fi and Wi-Fi are quite similar as both transmit data electromagnetically. However, Wi-Fi uses radio waves while Li-Fi runs on visible light . As we now know, Li-Fi is a Visible Light Communications (VLC) system. This means that it accommodates a photo-detector to receive light signals and a signal processing element to convert the data into 'stream-able' content. Visible Spectrum An LED lightbulb is a semi-conductor light source meaning that the constant current of elect

What is Machine 2 Machine (M2M)? How its work and Challenges?

Machine-to-machine communication, or M2M, is exactly as it sounds: two machines “communicating,” or exchanging data, without human interfacing or interaction. This includes serial connection, powerline connection (PLC), or wireless communications in the industrial Internet of Things (IoT). Switching over to wireless has made M2M communication much easier and enabled more applications to be connected. As businesses have realized the value of M2M, it has taken on a new name: the Internet of Things (IoT) . IoT and M2M have similar promises: to fundamentally change the way the world operates. Just like IoT, M2M allows virtually any sensor to communicate, which opens up the påossibility of systems monitoring themselves and automatically responding to changes in the environment, with a much reduced need for human involvement. M2M and IoT are almost synonymous—the exception is IoT (the newer term) typically refers to wireless communications, whereas M2M can refer to any two ma

Home Automation Why? And How ?

 What is Home Automation?  With advancement of Automation technology, life is getting simpler and easier in all aspects. In today’s world Automatic systems are being preferred over manual system. With the rapid increase in the number of users of internet over the past decade has made Internet a part and parcel of life, and IoT is the latest and emerging internet technology. Internet of things is a growing network of everyday object-from industrial M2M that can share information and complete tasks while you are busy with other activities. Wireless Home Automation system using IoT is a system that uses computers or mobile devices to control basic home functions and features automatically through internet from anywhere around the world, an automated home is sometimes called a smart home. It is meant to save the electric power and human energy.  A key feature in home automation is the ability to do tasks automatically and monitor or change status remotely. Common tasks in

Wireless Network and Wireless Technology

Wireless communication is among technology’s biggest contributions to mankind. Wireless communication involves the transmission of information over a distance without help of wires, cables or any other forms of electrical conductors. The transmitted distance can be anywhere between a few meters (for example, a television’s remote control) and thousands of kilometres (for example, radio communication). Many communication technologies are well known such as WiFi, Bluetooth, ZigBee and 2G/3G/4G cellular, but there are also several new emerging networking options such as Thread as an alternative for home automation applications, and Whitespace TV technologies being implemented in major cities for wider area IoT-based use cases. Depending on the application, factors such as range, data requirements, security and power demands and battery life will dictate the choice of one or some form of combination of technologies. These are some of the major communication technologies on o

The Smart Agriculture Revolution !!

The government realizes the need to bring about major changes into agriculture and incorporating the benefits of the digital revolution for better results.  The Internet of Things (IoT) is transforming the agriculture industry and enabling farmers to contend with the enormous challenges they face. The industry must overcome increasing water shortages, limited availability of lands, difficult to manage costs, while meeting the increasing consumption needs of a global population that is expected to grow by 70% by 2050. (Reference:  Food and Agriculture Organization of the United Nations ) Smart farming is a concept quickly catching on in the agricultural business. Offering high-precision crop control, useful data collection, and automated farming techniques, there are clearly many advantages a networked farm has to offer Why agriculture needs to improve? Agriculture is one of the major industries in India . It employs around 50% of the workforce and along with fisher

OCPP - An EV Charging Protocol

Nowadays, the growing CO2 emissions are one of the main international issues. The world is becoming aware that the current climate issues start being critic and that something has to be done. In parallel, Earth starts running out of fossil fuels so alternative energies and alternative ways of producing energy have to be found. Driving electric vehicles would reduce the CO2 emissions and the use of fossil fuels. Types of EV Charging Protocols ·         Open Smart Charging Protocol (OSCP) ·         OpenADR 2.0 ·         Open Charge Point Interface protocol (OCPI v0.4) ·         IEEE 2030.5 (IEEE Adoption of Smart Energy Profile 2.0 / SEP2) ·         Smart charging protocols overlap ·          Open Charge Point Protocol (OCPP) ·         IEC 61850-90-8 ·         Open Clearing House Protocol (OCHP) ·         Open Charge Point Interface protocol (OCPI 2.1) ·         Open InterCharge Protocol (OICP) ·         eMobility Inter-Operation Protocol(eMIP)

Project Loon - Balloon-Powered Internet for Everyone

What is Project Loon? More than half of the world's population is still without Internet access. Project Loon is a network of balloons traveling on the edge of space, designed to extend Internet connectivity to people in rural and remote areas worldwide History  In 2008, Google considered contracting with or acquiring Space Data Corp., a company that sends balloons carrying small base stations about 20 miles (32 km) up in the air for providing connectivity to truckers and oil companies in the southern United States, but didn't do so Unofficial development on the project began in 2011 under incubation in  Google X  with a series of trial runs in  California 's  Central Valley . The project was officially announced as a Google project on 14 June 2013 The project has run its experimental pilot in New Zealand, Calafornia’s Central Valley, northeast Brazil, South Africa, Sri Lanka (in February),  as well as in Indonesia. T

Pokémon Go is getting Indian youth to do what their parents never could .....

What is Pokemon Go? Pokemon Go is a mobile-phone game based on Pokemon cartoon characters and augmented reality. Augmented reality refers to a real-time representation of any actual physical environment with certain elements that are highlighted or modified. In other words, a view of any real world environment onscreen with certain modifications. Developed by Niantic labs , this technology was released on 6 July on Android and iOS in selected countries . Pokemon Go players have to move around in the physical world to catch Pokemon, join gyms and battle with other players. Just as in the animation series. Pokémon Go is getting Indian youth to do what their parents never could.... Young Indians are visiting temples more frequently—but not due to religious reasons. The hit game Pokémon Go is drawing youngsters in India to visit temples as many “pokéstops,” or locations where you can find Pokémon, are located inside these places of worship. Pokémon Go is an

LiDAR (Light Detection and Ranging)

What is LIDAR? LiDAR  (Light Detection and Ranging)   is fundamentally a distance technology. An airborne LiDAR system actively sends light energy to the ground. This light emitted is known as a pulse . The LiDAR measures reflected light back to the sensor. This reflected light is known as a return . So pulses of light travel to the ground. They return and are detected by the sensor giving the range (a variable distance) to the Earth. This is how LiDAR earned its name – Light Detection and Ranging .  LIDAR systems allow scientists and mapping professionals to examine both natural and manmade environments with accuracy, precision , and flexibility. NOAA scientists are using LIDAR to produce more accurate shoreline maps, make digital elevation models for use in geographic information systems, to assist in emergency response operations, and in many other applications. Currently we are using two types of LiDAR - Ariborne LiDAR and Ground-Based LiDAR. Airborne

Drones - A Future Technology

What is a Drone? – “Drones” are probably the most advanced equipment in the field of robotics, aeronautics and electronics. The technical name of drones is “Unmanned Aerial Vehicles” (UAVs) or Remotely Piloted Aerial Systems (RPAS). They are aerial vehicles which come in wide varieties of sizes, shapes and functions, which are controlled either by remote or control systems from the ground. They are generally used to carry out tasks in which manned flight is considered to be risky. Drones mostly find use in military services, but are now days finding use in various civilian operations such as search and rescue, weather analysis etc. They are known for their “precision” and “stealth” features. Drones have carried out monumental tasks in preventing terrorist attacks. How Drones Work? A typical unmanned aircraft is made of light composite materials to reduce weight and increase maneuverability. This composite material strength allows  military drones  to cruise at extremely high a